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Abstract 19 

In situ PM2.5 concentration observations have long been used as critical data sources in haze related 20 

studies. Due to the frequently occurred haze pollution events, China started to monitor PM2.5 21 

concentration nationwide routinely from the newly established air quality monitoring network. 22 

Nevertheless, the acquisition of these invaluable air quality samples is challenging given the absence 23 

of public available data download interface. In this study, we provided a homogenized in situ PM2.5 24 

concentration dataset that was created using hourly PM2.5 data retrieved from the China National 25 

Environmental Monitoring Center (CNEMC) via a web crawler between 2015 and 2019. Methods 26 

involving missing value reconstruction, change point detection, and bias adjustment were applied 27 

sequentially to deal with data gaps and inhomogeneities in raw PM2.5 observations. After excluding 28 

records with limited temporal coverage, a homogenized PM2.5 concentration dataset comprising of 29 

1,309 five-year long daily PM2.5 data series was eventually compiled. This is the first thrust to 30 

homogenize in situ PM2.5 observations in China. The trend estimations derived from the homogenized 31 

dataset indicate a spatially homogeneous decreasing tendency of PM2.5 across China at a mean rate of 32 

about –7.6% per year from 2015 to 2019. In contrast to raw PM2.5 observations, the homogenized data 33 

record not only has a complete data integrity but is more consistent over space and time. This 34 

homogenized daily in situ PM2.5 concentration dataset is publicly accessible at 35 

https://doi.pangaea.de/10.1594/PANGAEA.917557 (Bai et al., 2020a), which can be applied as a 36 

promising dataset for PM2.5 related studies such as PM2.5 mapping, human exposure risk assessment, 37 

and air quality management.  38 

Keywords: PM2.5; Data homogenization; Bias correction; In situ observation; Air quality indicators 39 
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1  Introduction 44 

A consistent PM2.5 concentration dataset is vital to the analysis of variations in PM2.5 loadings 45 

over space and time as well as in support of its risk analysis for air quality management, meteorological 46 

forecasting, and health-related exposure assessment (Lelieveld et al., 2015; Yin et al., 2020). Ground-47 

based monitoring network is commonly built to measure concentrations of air pollutants in due course 48 

across the globe. Suffering from extensive and severe haze pollution events in the past few years (Guo 49 

et al., 2014; Ding et al., 2016; Wang et al., 2016; Cai et al., 2017; Huang et al., 2018; Luan et al., 2018; 50 

Ning et al., 2018), China launched the operational ambient air quality sampling late in 2012 on the 51 

basis of the sparsely distributed aerosol observation network. To date, this in situ network has been 52 

enlarged to cover almost all major cities in China consisting of about 1500 monitoring stations. 53 

Concentrations of six key air pollutants including PM2.5, PM10, NO2, SO2, CO, and O3, are routinely 54 

measured on an hourly basis while the sampled data are released publicly online by the China National 55 

Environmental Monitoring Center (CNEMC) since 2013. 56 

Although in situ PM2.5 concentration data have played critical roles in improving our 57 

understanding of regional air quality variations and relevant influential factors (Yang D. et al., 2018; 58 

Yang Q. et al., 2019; Zheng et al., 2017), little concern was raised to the quality of such dataset itself 59 

(Bai et al., 2019a, 2019c; He and Huang, 2018; Zhang et al., 2019, 2018; Zou et al., 2016). Meanwhile, 60 

few studies provided a detailed description of the accuracy or bias level (uncertainty) of the observed 61 

PM2.5 data in recent years (You et al., 2016; Guo et al., 2017; Shen et al., 2018). The primary reason 62 

lies in the fact that neither quality assurance flag nor metadata information documenting the 63 

uncertainty other than data samplings were provided, making such quality assessment infeasible. 64 

The data quality, in particular the data homogeneity, is of critical importance to the exploration 65 

of the given dataset, especially for trend analysis (Bai et al., 2019c; C. Lin et al., 2018; Liu et al., 2018; 66 

Ma et al., 2015) and data integration (Bai et al., 2019b, 2020b; T. Li et al., 2017; Zhang et al., 2019) 67 

in which a homogeneous dataset is absolutely essential for downstream applications. Since two distinct 68 

kinds of instruments are used in the current air quality monitoring network to measure near surface 69 

PM2.5 concentration around China (Bai et al., 2020), imperfect instrumental calibration and intermittent 70 
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replacement of instruments may thus introduce obvious issue of discontinuity in PM2.5 observations. 71 

Such inhomogeneity may result in large uncertainty and even biased results in the subsequent analysis, 72 

especially in context-based and data driven PM2.5 concentration mapping (Bai et al., 2019b, 2019a; He 73 

and Huang, 2018; Wei et al., 2020), in which in situ PM2.5 concentration observations are used as the 74 

ground truth to characterize complex relationships with other possible contributing factors. 75 

Given the absence of an open access and quality assured in situ PM2.5 concentration dataset in 76 

China, in this study, we attempted to generate a long-term coherent in situ PM2.5 concentration dataset 77 

for scientific community to use in future applications. A set of methods involving missing value 78 

reconstruction, change point detect, and bias adjustment were geared up seamlessly in a big data 79 

analytic manner to improve the data integrity and to remove discontinuities present in raw PM2.5 80 

observations. Such an analytical process is also referred to as data homogenization in data science or 81 

big data analytics (Cao and Yan, 2012; Wang et al., 2007). To our knowledge, this is the first thrust to 82 

homogenize a large-scale dataset of in situ PM2.5 concentration observations in China. In the following 83 

sections, we will introduce the data source as well as detailed big data analytics methods used for the 84 

creation of a homogenized PM2.5 concentration dataset. 85 

2  In situ PM2.5 concentration observations  86 

In this study, the hourly PM2.5 concentration data sampled at more than 1,600 state-controlled air 87 

quality monitoring stations across China from January 1, 2015 to December 31, 2019 were utilized. 88 

The PM2.5 concentration data are routinely measured on an hourly basis using instruments such as 89 

beta-attenuation monitors and Tapered Element Oscillating Microbalance (TEOM) analyzer. The 90 

ordinary instrumental calibration and quality control are performed according to the national ambient 91 

air quality standard of GB3095-2012 and HJ 618–2011 (Guo et al., 2009, 2017). Generally, TEOM 92 

can measure PM2.5 concentration within the range of 0–5,000 μg m-3 at a resolution of 0.1 μg m-3, with 93 

precisions of ±0.5 μg m-3 for 24-h average and ±1.5 μg m-3 for hourly average (Guo et al., 2017; Xin 94 

et al., 2012). All PM2.5 measurements are publicly released online by the National Urban Air Quality 95 

Real-time Publishing Platform (http://106.37.208.233:20035/) under the China National 96 

Environmental Monitoring Center (CNEMC) within one hour after the direct sampling.  97 
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Although these data sampling are publicly released, the acquisition of these valuable samplings 98 

always exhibits a big challenge because no data download interface is provided to the public by the 99 

CNEMC website. Therefore, it is impossible for users to retrieve the historical observations from the 100 

given website. Rather, science community has to count on other measures such as an automatic web 101 

crawler for the retrieval of these online updated data samples from the data publishing platform. 102 

Nevertheless, the archived data records through such an approach suffered from significant data losses 103 

due to various unexpected reasons like power outage and internet interruption. Consequently, the data 104 

integrity becomes problematic and further treatments like gap filling are thus essential to accounting 105 

for such defects at least. 106 

Moreover, hourly PM2.5 concentration observations that were sampled at five embassies of United 107 

States in China from January 2015 to June 2017 were used as an independent dataset to evaluate the 108 

fidelity of the homogenized PM2.5 concentration dataset. Geographic locations of these five embassies 109 

have been shown in Table S1. These PM2.5 data were measured independently under the U.S. 110 

department of state air quality monitoring program and can be acquired from the 111 

http://www.stateair.net/. To be in line with the homogenized dataset, the hourly PM2.5 concentration 112 

data were aggregated to the daily level by averaging the 24-h observations sampled on each date while 113 

daily averages were calculated only for days with more than 12 valid samples of a possible 24-h. 114 

3  Homogenization of in situ PM2.5 concentration data 115 

For the creation of a long-term coherent in situ PM2.5 concentration dataset, it is necessary to 116 

create an analytical framework of the big data analytics which seamlessly gears up several methods as 117 

a whole for the purposes of gap filling, change point detection, and discontinuity adjustment. Figure 1 118 

shows a schematic illustration of the general workflow toward generating a homogenized dataset. The 119 

whole process can be outlined as follows. 120 

(1) It is necessary to perform the essential quality control and gap filling on the raw PM2.5 observations 121 

so that the bias arising from large outliers and resampling errors due to incomplete observations 122 

can be reduced. 123 
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 124 
Figure 1. A schematic flowchart for the creation of a homogenized daily in situ PM2.5 concentration 125 

dataset. 126 

  127 

(2) Short-term time series due to sites relocation were temporally merged to attain a long-term record. 128 

Then, PM2.5 concentration time series with a temporal coverage of less than four-year during the 129 

study period were excluded and the quality-controlled observations of hourly in situ PM2.5 130 

concentration were resampled to daily and monthly scales to initiate the homogeneity test.  131 

(3) Reference time series were constructed for each long-term PM2.5 concentration record using data 132 

measured at adjacent monitoring sites in the surroundings. For PM2.5 concentration records failing 133 

to produce a reference series, no homogeneity test was performed for such datum due to the 134 

absence of reference series.  135 

(4) The discontinuity identified in each daily long-term PM2.5 concentration time series were adjusted 136 

using the quantile-matching (QM) adjustment method according to the detected change points in 137 

the monthly record with the support of reference series.  138 
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(5) Post-processing measures such as nonpositive value correction and another round gap filling were 139 

further performed on the homogenized records to improve the quality to attain a quality-assured in 140 

situ PM2.5 concentration dataset. More details of each method are described in the following 141 

subsections. 142 

3.1 Quality control 143 

Given the possibility of the presence of abnormal samplings, it is essential to removing the outliers 144 

detected in the original PM2.5 observations to reduce the false alarm rate in change point detection 145 

during the subsequent homogeneity test. Specifically, hourly PM2.5 concentration data values meeting 146 

one of the following criteria were excluded: 1) out of the range between 1 and 1,000 μg m-3, and 2) 147 

more than three standard deviations from the median of observations within a 15-h time window. Both 148 

criteria aimed to remove large outliers which could result in biased daily averages. Overall, 3.46% of 149 

PM2.5 samples were treated as outliers which were then excluded accordingly (filled with Nan to 150 

indicate missing values). 151 

3.2  Gap filling and resampling 152 

As indicated in a recent study (Bai et al., 2020), missing value related data voids become a big 153 

obstacle in the raw PM2.5 observations that were retrieved from the CNEMC website as PM2.5 154 

observations on 40% of sampling days suffered from data losses due to unexpected reasons. To reduce 155 

the impact of missing value related resampling (from hourly to daily) bias on the subsequent 156 

homogeneity test, we filled those missing value related data gaps that were found in each 24-h PM2.5 157 

observation by applying the DCCEOF method developed very recently (Bai et al., 2020b). Such a gap 158 

filling effort enabled us to improve the percentage of days without missingness during the study time 159 

period from 58.8% to 97.3%. 160 

In spite of the improvement of data integrity after gap filling, the resultant PM2.5 time series 161 

remain temporally discrete due to the emergence of several long-lasting (e.g., more than 24 consecutive 162 

hours) data missing episodes. Also, the hourly time series are still too noisy to be handled by the 163 

available homogeneity test software due to the significant variability of PM2.5 over space and time. In 164 

such context, the hourly PM2.5 concentration records were resampled to daily and monthly scales to 165 

https://doi.org/10.5194/essd-2020-121

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 29 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 
 

8 

initiate the homogeneity test. Moreover, the monthly series was primarily used to detect the possible 166 

change points while the daily series was adjusted in reference to the corresponding reference series 167 

based on the change points detected from the monthly series. To avoid large resampling bias, monthly 168 

averages were calculated only for those with at least 20 valid daily means of a possible month at each 169 

site. The frequency of missing values in each month was also calculated as a possible metadata 170 

information to further examine the detected change points. 171 

3.3  Homogeneity test 172 

A commonly used homogeneity test software, the RHtestsV4 package, was hereby applied to 173 

detect the possible discontinuities in raw PM2.5 data series that were retrieved from the CNEMC 174 

website. As suggested in Wang and Feng (2013), RHtestsV4 is capable of detecting and adjusting 175 

change points in a data series with first-order autoregressive errors. Given the low false alarm rate via 176 

change point detection and the capability to adjust discontinuity, the RHtests software packages have 177 

been widely used to homogenize climate data records such as temperature (Cao et al., 2013; Xu et al., 178 

2013; Zhao et al., 2014), precipitation (Wang et al., 2010a; Nie et al., 2019), and other datum like 179 

boundary layer height (Wang and Wang, 2016). Two typical methods, namely the PMTred and 180 

PMFred, were embedded in a recursive testing algorithm in RHtestsV4, with the former relying on the 181 

penalized maximal t test (PMT) while the latter based on the penalized maximal F test (PMF) ( Wang 182 

et al., 2007; Wang, 2008a). With the incorporation of these empirical penalty functions (Wang, 2008a, 183 

b), the problem of uneven distribution of false alarm rate is largely alleviated with the aid of RHtestsV4. 184 

In contrast to the PMF which works without a reference series, the PMT uses a reference series to 185 

detect change points and the results are thus far more reliable (Wang, 2008a, b). The way to generate 186 

reference series will be described in the next subsection. Also, the RHtestsV4 is capable of making 187 

essential adjustments to the detected discontinuities by taking advantage of the QM adjustment method 188 

(Wang and Feng, 2013).  189 

Here the PMT method rather than the PMF was used to detect change points given the higher 190 

confidence of the former method in change point detection due to the involvement of reference series 191 

(Wang and Feng, 2013). To ensure the reliability of detected discontinuities, change point was defined 192 
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and confirmed at a nominal 99% confidence level, and the data records were then declared to be 193 

homogeneous once no change point was identified. Subsequently, the QM adjustment method was 194 

applied to correct PM2.5 observations with evident drifts with the support of reference series, namely, 195 

to homogenize PM2.5 concentration data series. To avoid large sampling uncertainty in the estimate of 196 

QM adjustments, the Mq (i.e., the number of categories on which the empirical cumulative distribution 197 

function is estimated) was automatically determined by the software to ensure adequate samples for 198 

the estimation of mean difference and probability density function. Meanwhile, the number to 199 

determine the base segment (i.e., Iadj) was set to 0 so that datum in other segments were all adjusted 200 

to the segment with the longest temporal coverage. 201 

3.3.1  Construction of reference series 202 

A good reference series is vital to the relative homogeneity test because it helps pinpoint possible 203 

discontinuities in each base series (the data series to be tested) as well as determine the performance 204 

of the subsequent data adjustment. In general, reference series can be organized by using one specific 205 

record either measured at the adjacent station or aggregated from multiple adjacent observations (Cao 206 

and Yan, 2012; Peterson and Easterling, 1994; Xu et al., 2013; Wang et al., 2016). The most 207 

straightforward method is to use the neighboring data series either measured at the nearest station or 208 

series that are highly correlated with the base series (Peterson and Easterling, 1994; Cao and Yan, 209 

2012; Wang and Feng, 2013). Such methods, however, fail to take the repetitiveness of the neighboring 210 

series into account since the neighboring series may also suffer from discontinuities.  211 

To avoid the misuse of inhomogeneous PM2.5 concentration records in constructing reference 212 

series, a complex yet robust data integration scheme was developed to screen, organize, and construct 213 

reference series for each in situ PM2.5 concentration data series. For each daily PM2.5 concentration 214 

data series, all the neighboring series were firstly identified from its surroundings with a lag distance 215 

as large as of 50 km. No reference series was constructed once there was no neighboring series 216 

available within the given radius and in turn the homogeneity of the given record was not examined. 217 

Otherwise, both correlation coefficient (R) and coefficient of variation (CV) were calculated between 218 

the given base series and each selected neighboring series to assess their representativeness (Shi et al., 219 
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2018; Rodriguez et al., 2019). Then, neighboring series with R>0.8 and CV<0.2 were selected as 220 

candidates to construct the reference series for a given base series.  221 

The reference series was then constructed by averaging both the base and the candidate series at 222 

each observation time if there was only one candidate series. For the situation with more than one 223 

candidate series, the empirical orthogonal function (EOF) analysis was applied to these multiple 224 

candidates and then the original fields were reconstructed with the leading principal components when 225 

the accumulated variance explained by them exceeded 80%. This was expected to reduce the possible 226 

impacts of abnormal observations and short-term discontinuities in the neighboring candidates on the 227 

resultant reference series. Subsequently, the reference series were organized and constructed through 228 

a spatial weighting scheme as each reconstructed record was assigned a spatially resolved weight 229 

according to their relative distances to the base series over space. Here we applied a Gaussian kernel 230 

function to estimate the weight of one neighboring observation on the other in space and such a scheme 231 

has been proven to be effective in assessing the spatial autocorrelation of PM2.5 concentration (Bai et 232 

al., 2019b). Mathematically, the reference series can be constructed from the following equations: 233 

𝑃𝑀!"# =$
𝑤$ ∗ 𝑃𝑀%&'(

$

∑𝑤$

)

$*+

																																																												(1) 234 

𝑤 = exp/
−𝑑,

2ℎ,4																																																																								
(2) 235 

where 𝑃𝑀!"#  and 𝑃𝑀%&'(  denote the reference and candidate series, respectively. N is the total 236 

number of candidate series while 𝑤 is the spatial weight assigned to each candidate series and d is 237 

the spatial lag distance between the base and the corresponding candidate series. h is a spatial 238 

correlation length that is used to modulate the relative influence of a distant observation on the data 239 

measured at the base site. In this study, an empirical value of 50 km was assigned according to the 240 

estimated semi-variogram results (Bai et al., 2019b).  241 

For any record having neighboring series within 50 km but poorly correlated (R<0.8 or CV>0.2) 242 

to all its neighbors (meaning the base series differ from the neighbors), the reference series were 243 

created by following the same procedures as those detailed above by taking the nearest neighbor as the 244 

base series. For the situation with only one candidate series available, it is logical to compare both the 245 

base and the candidate series against another data to check which one should be corrected. It was noted 246 
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that the PM2.5 time series estimated from the MERRA-2 aerosol reanalysis in the same way as 247 

described in He et al. (2019) was used. The one more correlated to this external PM2.5 time series was 248 

then used as the reference (deemed as homogeneous) while the other was considered as the base series 249 

(i.e., implies to be adjusted). Such an inclusive scheme empowered us to screen and construct reference 250 

series for 1,262 long-term PM2.5 concentration records across the board. In contrast, no reference series 251 

were constructed for 47 isolated records.  252 

3.3.2  Post-processing measures 253 

Several post-processing measures were applied to the adjusted data records to further improve 254 

the quality of this dataset. Since nonpositive values may appear in the QM adjusted data series if the 255 

original values are close to zero (Wang et al., 2010b), nonpositive values were replaced with the 256 

smallest valid PM2.5 concentration amount measured at each monitoring site during the study period. 257 

Subsequently, the data gaps in the adjusted datum due to long-lasting missingness were filled by first 258 

calibrating the corresponding data values in the reference series measured on the same date (if available) 259 

to the homogenized datum level. The modified quantile-quantile adjustment (MQQA) method 260 

proposed in Bai et al. (2016) was hereby used given its adaptive data adjustment principle. For the 261 

predicted values, such MQQA scheme rendered higher accuracy than those interpolated from data 262 

values measured on adjacent dates because PM2.5 concentration is spatially more correlated than in the 263 

temporal domain (Bai et al., 2019b). For the remaining data gaps, those missing values were 264 

reconstructed in a similar procedure as the DCCEOF method (Bai et al., 2020b). Note that the matrix 265 

used for EOF analysis in the context of DCCEOF was constructed using the neighboring data series 266 

measured within a radius of 100 km with a temporal lag of 30 days at most. Finally, all data values 267 

were rounded to integer to be in line with the original PM2.5 concentration observations. 268 

4  Results and discussion 269 

4.1  Descriptive statistics 270 

Prior to data homogenization, we first need to exclude those short-term and less reliable records. 271 

Figure 2 shows the temporal variations of the number of air quality monitoring stations deployed in 272 

China during 2015–2019 as well as the spatial patterns of the frequency of missing values for each 273 
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long-term PM2.5 concentration record. It shows that a total of about 1,630 air quality monitoring 274 

stations had been deployed in China before 2020. Nevertheless, about 1,500 sites routinely providing 275 

PM2.5 observations were kept up in operation since 2015 (Figure 2a). By referring to the data continuity 276 

of PM2.5 observations, it is noticeable that 100 monitoring stations had been withdrawn before 2020 277 

because no PM2.5 observations were provided for more than three consecutive months since the release 278 

of their last valid data (Figure 2b). Meanwhile, 42 pairs of stations were found to be relocated since 279 

new stations at nearby started to provide PM2.5 observations soon after the suspension of the original 280 

site. This is also corroborated by the temporal lags of PM2.5 observations between original and newly 281 

deployed stations as many of them were found to have a time lag less than 15-day. Also, 94 sites were 282 

found with limited data records due to short temporal coverage (newly deployed). Finally, 1,353 long-283 

term PM2.5 concentration records were identified with their first valid data released even earlier than 284 

2015. In regard to the frequency of missing value, it is indicative that data gaps were obvious in these 285 

long-term PM2.5 concentration records, with about 6% of hourly data values missed on ~47% of 286 

sampling days on average. This also motivates us to fill such data gaps to improve the data integrity.     287 

  288 

Figure 2. Spatial and temporal patterns of air quality monitoring stations in China. (a) Temporal 289 

variations of the total number of air quality monitoring stations in China. (b) Spatial patterns of the 290 

frequency of missing value in each long-term hourly PM2.5 concentration record measured from 291 

January 1, 2015 to December 31, 2019. Stations were categorized into distinct groups according to 292 

their data length and temporal continuity. The frequency of missingness was calculated as the ratio of 293 

https://doi.org/10.5194/essd-2020-121

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 29 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 
 

13 

the number of missing values in each PM2.5 concentration record to the total number of samplings from 294 

the time of the release of the first valid data to December 31, 2019. 295 

4.2  Homogenization of in situ PM2.5 data 296 

A total of 1,395 long-term (with five-year observations) PM2.5 concentration records were 297 

acquired with the inclusion of 42 temporally merged data series at those relocated stations. After 298 

removing those suffering from more than three consecutive months data losses, 1,309 long-term yet 299 

consecutive PM2.5 concentration records were obtained. The homogeneity test was finally performed 300 

on 1,262 records due to the availability of reference series. Figure 3 shows the spatial patterns of the 301 

total number of change points detected in 1,262 monthly PM2.5 concentration records. The ubiquitous 302 

change points imply that there is an obvious inhomogeneity in this in situ PM2.5 concentration dataset. 303 

About 57% (719 out of 1,262) of records failed to pass the homogeneity test due to the presence of 304 

change points. Given the overall good agreement between the base and reference series (refer to Figure 305 

S1 for the correlation coefficient and root mean square error between them), it indicted that these PM2.5 306 

concentration records did suffer from evident discontinuities. Meanwhile, the vast majority (~80%) of 307 

the inhomogeneous PM2.5 records suffered from no more than two change points (Figure 3), suggesting 308 

the mean shift could be the primary reason for the detected discontinuities. Moreover, 20 records were 309 

even found suffering from no less than five significant change points, indicating phenomenal 310 

discontinuities in these records. 311 

 312 
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Figure 3. Spatial patterns of the total number of change points detected in each long-term yet 313 

consecutive PM2.5 concentration records. Gray dot indicates there was no change point detected in this 314 

PM2.5 concentration record. 315 

Figure 4 shows the temporal variability of the number of change points detected in monthly PM2.5 316 

concentration records. As indicated, change points were detected in every specific month of the year 317 

from May 2015 to July 2019, especially in late spring (e.g., May), in which change pointes were more 318 

likely to be detected (Figure 4b). This is attributable to the seasonality of PM2.5 loading in China as 319 

high PM2.5 concentrations are always observed in the winter whereas low values in the summer. 320 

Consequently, change points were detected with larger chance during the chronic transition periods 321 

(e.g., spring to summer). In addition, it is noteworthy that a large volume of change points was detected 322 

in early 2015, indicating the existence of phenomenal discontinuities during this period (Figure 4a). 323 

After checking the temporal variations of PM2.5 concentration, findings indicate that PM2.5 324 

observations varied with large deviations among each other during this period. This could be linked to 325 

the imperfect instrument calibration or irregular operation in the early stage.   326 

 327 

Figure 4. Temporal variations of the number of change points detected in (a) each specific month from 328 

2015 to 2019 and (b) each month of the year. National mean PM2.5 concentration in each month of the 329 

year was calculated based on PM2.5 data measured at our selected 1309 sites during 2015–2019. 330 

 331 

Due to the lack of essential metadata information, it is a challenge for us to verify each detected 332 

change point through a manual inspection. Rather, the variations in the base and reference series was 333 

explored to identify the possible reasons for the detected discontinuities. Figure 5 presents three typical 334 
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inhomogeneous PM2.5 time series with different number of change points. The inter-comparisons 335 

between the base and reference series indicate an overall good agreement among them in terms of the 336 

long-term variation tendency. However, obvious drifts were still phenomenal in their residual series, 337 

which were even more evident by referring to their mean-shift series. For example, both the residual 338 

and mean-shift series shown in Figure 5d clearly illustrate a typical discontinuity as there was an 339 

obvious departure of mean PM2.5 concentration level during the period of January to October 2016. In 340 

contrast, the Figures. 5b and 5e present another typical inhomogeneity as statistically significant 341 

decreasing trend was found in the residual series with monthly PM2.5 concentration deviations 342 

decreased from nearly 5 μg m-3 to –4 μg m-3 step wise. Such inhomogeneity would undoubtedly result 343 

large bias in the trend estimations over that region. The bottom panel (Figures. 5c and 5f) shows the 344 

change points detected in the merged PM2.5 time series at a pair of relocated sites. It is noteworthy that 345 

the detected discontinuity should be largely ascribed to the inconsistency emerged in the first data 346 

series rather than due to the site relocation. 347 

 348 

Figure 5. Temporal variations of three typical inhomogeneous PM2.5 concentration records during 349 

2015–2019. (Top) Significant deviations during a short time period, (middle) long-term chronic drifts 350 

with statistically significant varying trend detected in the residual series, (bottom) discontinuity due to 351 
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site relocation. The left panel compares the base series with the reference and the neighboring series 352 

used to compose the reference while the right panel shows the residual series between the base and 353 

reference series as well as their mean-shift series.  354 

 355 

Figure 6 shows the estimated linear trends for PM2.5 residual series that failed to pass the 356 

homogeneity test. Approximately 89% of the residual series were found exhibiting statistically 357 

significant linear trends, suggesting the vital importance to homogenize such PM2.5 concentration 358 

records as the trend estimations at these stations could be prone to large bias if no essential adjustments 359 

are performed. Further comparisons of the percentage of data gaps between homogeneous and 360 

inhomogeneous records (Figure S2) as well as the spatial distance between the base and the reference 361 

series (Figure S3) indicate that both the frequency of data gaps and spatial distance have no obvious 362 

impact on the change point detection. In other words, the detected change points have no linkage with 363 

neither missing value frequency nor spatial distance between the base and neighboring series, 364 

suggesting a high confidence level of the identified discontinuities in these PM2.5 concentration records. 365 

 366 

Figure 6. Trend estimations for the residual PM2.5 concentration data series that failed to pass the 367 

homogeneity test during 2015–2019. The solid circles indicate trends are statistically significant at the 368 

95% confidence level. 369 

 370 
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Given the emergence of obvious discontinuities in more than half of the selected long-term PM2.5 371 

concentration records, the QM adjustment method was applied to correct the discontinuities detected 372 

in each PM2.5 concentration record. Figure 7 shows an example of homogenization on PM2.5 373 

concentration data series that suffered from evident drifts from its reference (large drifts shown in 374 

Figure 5d). The inter-comparisons of PM2.5 concentration data between the base and reference series 375 

indicate that the PM2.5 concentration level was obviously underestimated by the raw observations 376 

compared with the reference, especially during the middle of 2016 (Figure 7a). Such evident drifts 377 

were remarkably diminished after the homogenization (Figure 7b), which shows a good agreement of 378 

the mean PM2.5 concentration level between the homogenized datum and the reference series.  379 

 380 

Figure 7. Comparison of daily mean PM2.5 concentration before and after homogenization at one 381 

monitoring site in Guangdong province (24.69°N/113.60°E) from November 2015 to December 2016 382 

(large drifts shown in Figure 5d). 383 

 384 

4.3  Validation with independent dataset 385 

In this study, PM2.5 observations that were collected independently by five consulates of United 386 

States distributed in five major Chinese cities between 2015 and 2017 were used to evaluate the 387 

consistency of the derived PM2.5 concentration records. Figure 8 shows site-specific comparisons of 388 
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daily PM2.5 concentration between homogenized and observed data in Beijing, Shanghai, Chengdu, 389 

Shenyang, and Guangzhou, respectively. It is indicative that the homogenized daily PM2.5 390 

concentration data were in good agreement with PM2.5 observations sampled at US consulates, with a 391 

correlation coefficient value of >0.95 and root mean square error of <15 μg m-3. Given the 392 

independent measurement of PM2.5 concentration data at US consulates, we argue that the 393 

homogenized PM2.5 records are accurate enough in characterizing the variability of PM2.5 loadings in 394 

China. It is also noteworthy that the homogenized PM2.5 records are temporally complete whereas 395 

missing values are found in PM2.5 observations sampled at US consulates.   396 

 397 
Figure 8. Comparisons of the homogenized PM2.5 concentration (red) against PM2.5 observations (blue) 398 

measured at five consulates of United States in China from January 2015 to June 2017. (a~e) Temporal 399 

variations of daily PM2.5 concentration and (f~j) the associated scatter plots.  400 
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4.4  Trend estimations from the homogenized dataset 401 

A homogenized data record is essential to trend analysis. Figure 9 presents the annual mean 402 

concentration of PM2.5 across China from 2015 to 2019. As shown, there is a phenomenal reduction 403 

of PM2.5 concentration in the past five years, especially in the North China Plain as the annual mean 404 

PM2.5 concentration decreased from more than 100 μg m-3 in 2015 to about 60 μg m-3 in 2019. To 405 

evaluate the benefits of data homogenization on PM2.5 trend estimations, PM2.5 trends estimated from 406 

both the raw observations and homogenized dataset were compared. Prior to trend analysis, each PM2.5 407 

concentration record was standardized in reference to its annual cycle to reduce the impacts of 408 

seasonality and spatial variations. Figure 10 shows a site-specific comparison of PM2.5 trend 409 

estimations derived from raw observed and homogenized datasets during 2015–2019. In general, trend 410 

estimations from both datasets showed an evident decreasing tendency of PM2.5 concentration from 411 

2015 to 2019. However, PM2.5 trends derived from raw observations exhibit obvious inhomogeneity 412 

over space, which is clearly evidenced by the antiphase trend estimations even at adjacent stations, 413 

especially for those with positive trends whereas all adjacent neighbors exhibited negative trends. Such 414 

antiphase trend estimations in a very small region also demonstrate the existence of obvious 415 

inhomogeneity in raw observed in situ PM2.5 concentration dataset. 416 

After homogenization, the phenomena of antiphase trend estimations over the local region was 417 

substantially diminished, resulting in a spatially much more homogeneous decreasing tendency of 418 

PM2.5 concentration across China (Figure 10b). This can be also evidenced by the enlargement of 419 

national mean PM2.5 decreasing trend estimations (increased from 7.01 to 7.25), in particular the 420 

decreased variations in trend values (uncertainty reduced from 0.25 to 0.22) and the increased number 421 

of PM2.5 records with statistically significant varying trends (1,208 versus 1,248). These results 422 

collectively demonstrate the effectiveness of the QM adjustment method in mitigating such 423 

inhomogeneity, which also highlight the critical importance of data homogenization to account for 424 

discontinuities in this in situ PM2.5 concentration dataset. Overall, our results indicate an obvious 425 

decreasing trend of PM2.5 concentration in China in the past five years at a mean rate of –7.25±0.22% 426 

per year. Compared with other regions of interest (ROIs) such as Pearl River Delta (PRD, refer to 427 
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Figure S4 for the location), PM2.5 loading over Beijing-Tianjin-Hebei (BTH), Yangtze River Delta 428 

(YRD), Sichuan Basin (SCB), and Central China (CC) decreased even more prominently (Table 1).  429 

 430 

Figure 9. Annual mean PM2.5 concentration derived from the homogenized daily PM2.5 concentration 431 

dataset at 1,309 monitoring stations in China between 2015 and 2019. The North China Plain was 432 

outlined by the red rectangle in panel (f). 433 

  434 

Figure 10. Linear trends for (a) raw observed and (b) homogenized daily PM2.5 concentration data 435 

during 2015–2019. Solid circles indicate trends are statistically significant at the 95% confidence 436 
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interval. Numbers shown in the lower left of each panel indicate the overall trend derived from (top) 437 

all available stations and (bottom) the stations with significant trends at the 95% confidence interval 438 

while the numbers shown in brackets are the corresponding number of data records. Each PM2.5 time 439 

series were standardized by its mean annual cycle during the study period to account for spatial 440 

variations of PM2.5. 441 

 442 

Table 1. Regional trend estimations for PM2.5 concentration over five major ROIs in China during 443 

2015–2019 before and after homogenization. Uncertainty in trend estimations were characterized at 444 

the 95% confidence interval. Locations of these ROIs can be found in Figure S4.  445 

ROI Raw observation (% a-1) Homogenized record (% a-1) 

Beijing-Tianjin-Hebei (BTH) -9.03 ± 0.78 -9.19 ± 0.69 

Yangtze River Delta (YRD) -7.07 ± 0.54 -7.33 ± 0.40 

Central China (CC) -8.47 ± 0.51 -8.58 ± 0.41 

Sichuan Basin (SCB) -7.39 ± 1.02 -7.84 ± 0.89 

Pearl River Delta (PRD) -4.30 ± 0.51 -4.60 ± 0.39 

    To further assess the improvement of the data quality after homogenization, the daily in situ PM2.5 446 

concentration records at a 1° × 1° grid cell resolution were grouped across China. In each grid cell, the 447 

regional mean correlation coefficient among PM2.5 concentration time series and standard deviation of 448 

PM2.5 trends were estimated from the raw observed and homogenized daily PM2.5 concentration time 449 

series, respectively. Their relative differences were then calculated to show the improvements of data 450 

homogeneity within each grid cell. As shown in Figure 11, the correlation among PM2.5 concentration 451 

datum was enhanced ubiquitously after homogenization, especially in the southwest of China (e.g., 452 

Yunnan) where obvious inhomogeneity was observed in the raw PM2.5 observations (Figure 10a). 453 

Meanwhile, the standard deviation of PM2.5 trends within each grid cell was also substantially reduced, 454 

even by more than two folds in the magnitude (Figure 11b). These results also demonstrate the critical 455 

need to homogenize the observed PM2.5 concentration data from a large-scale monitoring network to 456 

reduce temporal inconsistency and spatial inhomogeneity that were not even noticed before.  457 
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 458 
Figure 11. Spatial distributions of (a) the improvements of mean correlation coefficient among PM2.5 459 

concentration records before and after homogenization at a 1° × 1° grid cell resolution across China, 460 

and (b) their corresponding standard deviations of PM2.5 trends. 461 

 462 

5  Data availability 463 

The raw observations of in situ PM2.5 concentration data in China used in this study were 464 

retrieved via a web crawler from the National Urban Air Quality Real-time Publishing Platform 465 

(http://106.37.208.233:20035) between 2014 and 2019. Given the deployment of many new 466 

monitoring sites in 2014, we decided to generate a coherent PM2.5 concentration dataset starting from 467 

2015 to include as many records as possible. The homogenized daily in situ PM2.5 concentration dataset 468 

developed in this study is publicly accessible at https://doi.pangaea.de/10.1594/PANGAEA.917557 469 

(Bai et al., 2020a).  470 

6  Conclusions 471 

In this study, a homogenized yet temporally complete daily in situ PM2.5 concentration dataset 472 

in China was generated based on the discrete hourly PM2.5 concentration records that were retrieved 473 

from the National Urban Air Quality Real-time Publishing Platform using a web crawler during the 474 

period of 2015–2019. To create such a coherent dataset, a set of analytic methods were geared up 475 

seamlessly and applied sequentially to the retrieved raw PM2.5 concentration records, involving quality 476 
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control, gap filling, data merging, change point detection, and bias correction. This new dataset would 477 

help scientific community better elucidate the temporal and spatial variability of haze pollution in 478 

China in the recent years, which is expected to improve the understanding of underlying causes.    479 

The raw PM2.5 concentration records were found to be suffering from phenomenal 480 

inhomogeneity caused by data consistency and temporal coverage as well as the relocation and repeal 481 

of a bunch of monitoring stations. It indicated that more than half of the long-term PM2.5 concentration 482 

records failed to pass the homogeneity test, given the presence of significant change points. Further 483 

investigation confirms that large yet short-term mean shifts and chronic drifts are two primary reasons 484 

for the detected discontinuities.  485 

Based on the homogenized dataset, the long-term trends of PM2.5 concentration in China were 486 

estimated. In contrast to the inhomogeneous trend estimations that were derived from raw PM2.5 487 

concentration records, the homogenized dataset yielded a spatially much more homogeneous 488 

decreasing tendency of PM2.5 across China at a mean rate of about –7.3% per year. Such an 489 

improvement of homogeneity was also evidenced by the enhanced correlation and reduced standard 490 

deviation of trend estimations between homogenized PM2.5 concentration time series in the 491 

surroundings. These results clearly demonstrate the benefit of data homogenization on the 492 

improvement of the quality of this PM2.5 concentration dataset as evident discontinuities have been 493 

removed after homogenization. Overall, our work clearly reveals the presence of evident 494 

discontinuities in the in situ PM2.5 concentration records measured in China, and the homogenization 495 

actions are imperative to take in order to attain a long-term coherent PM2.5 concentration dataset that 496 

can be used to advance PM2.5 pollution related policy making and public health risk assessment.  497 
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